
NASA TECHNICAL NOTE fi 1 _ - -  NASA TN D-2439 

EVALUATION OF A N  ENERGY METHOD 
USING FINITE DIFFERENCES 
FOR DETERMINING THERMAL 
MIDPLANE STRESSES I N  PLATES 

by Harry G. Schaefer and Walter L. Heard Jr. 
Langley Research Center 
Langley Station, Hdmpton, Va, 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHINGTON,  D. C. AUGUST 1964 



TECH LIBRARY KAFB, NM 

I llllll Ill11 11111 Ill 1111 UI Ill1 Ill 
007757b 

EVALUATION OF AN ENERGY METHOD USING FINITE DIFFERENCES 

F O R  DETERMINING THERMAL MIDPLANE STRESSES IN P L A T E S  

By H a r r y  G. Schaef fer  and  Wal t e r  L. Hea rd ,  Jr. 

Langley  R e s e a r c h  C e n t e r  
Langley  Station, Hampton, Va .  

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

~ 

For s o l e  by the Off ice of Technica l  Services, Department of Commerce, 

Woshington, D.C. 20230 -- Pr ice  $1.00 



EVALUATION OF AN ENERGY METHOD USING FINITE DIFFERENCES 

FOR D E T m N I N G  THERMAL MIDPLANE STRESSES I N  PLATES 

By Harry G. Schaeffer and Walter L. Heard, Jr. 
Langley Research Center 

SUMMARY 

A method of obtaining a s e t  of f ini te-difference expressions f o r  t he  ther- 
m a l  stress function d i r e c t l y  from t h e  complementary strain-energy expression i s  
evaluated. The e s sen t i a l  difference between t h i s  method and the  more usual 
par t ia l -different ia l -equat ion approach i s  tha t ,  i n  t he  energy approach, only 
conditions involving t h e  var ia t ion  of t h e  s t r e s s  function and i t s  f i r s t  normal 
der ivat ive at t h e  boundary must be s a t i s f i e d  exp l i c i t l y .  These conditions a re  
generally termed the  "geometric" boundary conditions. I n  approaching the  prob- 
lem from the  par t ia l -different ia l -equat ion viewpoint, ra ther  than from the  
energy viewpoint, it i s  necessary t o  s a t i s f y  exp l i c i t l y  addi t ional  conditions 
involving t h e  second and t h i r d  der ivat ives  which are generally termed "natural" 
boundary conditions. 

The f in i te -d i f fe rence  method i s  evaluated by applying it t o  a thermal 
stress problem f o r  which an approximate solut ion and experimental r e su l t s  a r e  
avai lable .  
ber  of g r i d  s t a t ions  i s  increased. A col lect ion of coeff ic ients  f o r  g r id  sta- 
t i ons  on o r  near t h e  boundary i s  presented t o  a id  i n  the  rapid formulation of 
spec i f ic  problems. 

The f in i te -d i f fe rence  results appear t o  converge rapidly as the  num- 

INTRODUCTION 

I n  many appl icat ions of current i n t e r e s t  - f o r  example, t he  s t ruc tu ra l  skin 
of vehicles designed f o r  high-speed f l i g h t  i n  t h e  atmosphere - p la t e l ike  con- 
f igura t ions  a re  subjected t o  a thermal environment. This environment, together 
with r e s t r a i n t s  on the  p l a t e  boundary, may induce s t r e s s  i n  the  midplane of t he  
p l a t  e .  

The problem of determining the  relat ionship between midplane s t r e s s  dis-  
t r i bu t ion  and temperature d i s t r ibu t ion  has received considerable a t ten t ion  i n  
t h e  past .  I n  reference 1 a var ia t iona l  method i s  used t o  determine the  approxi- 
mate re la t ionship between temperature d i s t r ibu t ion  and midplane s t r e s s  f o r  thin,  
f la t ,  rectangular p la tes .  I n  reference 2 a s i m i l a r  problem i s  solved by using 
the  cha rac t e r i s t i c  functions f o r  beam vibrat ion modes. A f in i te -d i f fe rence  
method i s  presented in . re ference  3 which i s  based on an extended s t i f f n e s s  
method. 



I n  references 4 and 5 f in i te -d i f fe rence  methods are presented i n  which 
t h e  necessary s e t  of f in i te -d i f fe rence  equations i s  obtained d i r ec t ly  from the  
applicable energy expression. For cer ta in  problems t h i s  technique presents a 
much simpler approach f o r  obtaining t h e  desired set of difference equations than 
does the  more usual f in i te -d i f fe rence  representation of t he  p a r t i a l  d i f f e r e n t i a l  
equation. 
reference 6 f o r  p l a t e  vibrat ion problems. 
t o  evaluate t h i s  technique f o r  determining the  thermal-stress-equilibrium state 
of a p l a t e  where the  forcing function consis ts  of a temperature d is t r ibu t ion .  

The pa r t i cu la r  technique discussed i n  reference 5 i s  evaluated i n  
The purpose of t he  present paper is  

SYMBOLS 

a 

b 

E 

E r  

{GI 

G i  

h 

hr 

M 

K 

NX 

NY 

Nxy 

[QI 
Qij 

R 

one-half of p l a t e  length (see f i g .  3 )  

one-half of p l a t e  width ( see  f i g .  3 )  

modulus of e l a s t i c i t y ,  function of x and y 

reference modulus of e l a s t i c i t y  

thermal-forcing-function column matrix 

element of {GI 
p la t e  thickness, function of x and y 

reference p l a t e  thickness 

t o t a l  number of ha l f - s ta t ions  associated with type 2 areas 

t o t a l  number of g r i d  s t a t ions  associated with type 1 areas 

x-direction midplane force  per  un i t  length 

y-direction midplane force per  un i t  length 

midplane shear force per  un i t  length 

general  matrix of coeff ic ients  

element of [Q] 

number of g r i d  s t a t ions  at which solut ion i s  unknown 
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AT temperature change from reference-temperature s ta te ,  function of x 
and Y 

U complementary s t r a i n  energy 

X, Y Cartesian coordinates of p l a t e  

a coeff ic ient  of thermal expansion, function of x and y 

(i = 1, 2, . . . K) 

( j  = 1, 2, . . . M) 

E g r i d  spacing i n  x-direction 

qi>vj>qm>qk in tegra t ion  f ac to r s  

h g r i d  spacing i n  y-direction 

CI Poisson's r a t i o  

53 Airy s t r e s s  function 

column matrix of fi values t o  be determined Cil 
6( 1 var i a t iona l  operator 

V* Laplacian operator 

Subscripts: 

N, W, NN, EE, . . .NE/2, NW/2, . . . g r i d  points, located with respect t o  a general 
s t a t i o n  ( see  f i g .  2) 

0 ind ica tes  evaluation of a quantity a t  a general  g r id  point ( see  
f i g .  2) 

i, j,m,k integers  

GENERAL METHOD OF ANALYSIS 

The usual f in i te -d i f fe rence  approach' i s  t o  replace the  p a r t i a l  der ivat ives  
i n  t h e  governing p a r t i a l  d i f f e r e n t i a l  equation with a su i t ab le  s e t  of f i n i t e -  
difference approximations. For points  on o r  near t h e  boundary, t h e  der ivat ives  
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are  expressed i n  terms of f i c t i t i o u s  ex ter ior  points; these f i c t i t i o u s  points 
a re  then eliminated by means of t he  boundary conditions, a l s o  expressed i n  
f ini te-difference form. 

The e s sen t i a l  difference between the  usual f in i te -d i f fe rence  approach 
based on t h e  p a r t i a l  d i f f e r e n t i a l  equation and t h e  energy approach l i e s  i n  the  
manner of sa t i s fy ing  t h e  boundary conditions t o  be applied t o  the  solut ion sur- 
face, t he  surface i n  space defined by the  Airy s t r e s s  function I n  
t h e  energy approach t h e  only conditions t h a t  must be s a t i s f i e d  exp l i c i t l y  a re  
those involving t h e  var ia t ion  of t he  solut ion surface and t h e  var ia t ion of cer- 
t a i n  first normal der ivat ives  of t he  solut ion surface at the  boundary. These 
conditions are  generally termed the  "geometric," or forced, boundary conditions. 
The remaining boundary conditions, generally termed the  "natural" boundary con- 
di t ions,  a re  formulated i n  terms of t he  second and t h i r d  der ivat ives  of t he  
solution surface.  These conditions, which are of ten d i f f i c u l t  t o  handle 
exp l i c i t l y  i n  t h e  usual f ini te-difference approach, are automatically s a t i s f i e d  
as accurately as possible by using the  energy approach. 

$ = $(x,y). 

DEBIVATION OF DIFFERENCE EQUATIONS 

For a heated p l a t e  t h e  appropriate energy expression obtained from ref- 
erence 5 i s  

2 &!a'a + 2(1 + ax 2 2  ay ax ay 

where fl i s  t h e  A i r y  s t r e s s  function 
equilibrium conditions and i s  re la ted  
equations : 

which has been introduced t o  s a t i s f y  the  
t o  t h e  s t r e s s  resu l tan ts  by the  following 

Ny = 

N, = - 
aY2 

3x2 "1 a*$ 
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The appl icat ion of t h e  calculus of var ia t ions t o  equation (1) leads t o  
the  following d i f f e r e n t i a l  equation f o r  a rectangular plate:  

o4$ + &$(AT) = 0 

and t o  the  following associated boundary conditions: 

2:  A l o n g  x = xl, x = x 

w> = 0 - a3$ + ( 2  + CL) & + d l  ax h2 
ax3 ax 

Along Y = Y1’ Y = Y2: 

23- + aEh -(m) a = 0 
ay 

23 + ( 2  + p) 
h3 ax2 ay 

or  

or  

o r  

o r  

o r  

(3) 

6 ( g )  = 0, (Nxy = 0 )  

E($) = 0, (Nxy = 0 )  

where x = x 1, x = x2, y = yl, and y = y2 denote the  edges of t h e  p la te .  

The boundary conditions given i n  t h e  parentheses a re  t h e  physical interpreta-  
t i ons  of t he  boundary conditions on and i t s  f irst  der ivat ive and are seen 
t o  be force boundary conditions. The boundary conditions involving t h e  second 
and t h i r d  der ivat ives  of 
i n  d e t a i l  i n  reference 5 .  These boundary conditions do not have t o  be consid- 
ered when applying t h e  energy method t o  obtain d i r ec t ly  t h e  f in i te -d i f fe rence  
equations. 

$ 

$ are conditions of compatibility which a r e  discussed 

The f i rs t  s t ep  i n  determining the  necessary difference equations i s  t o  
divide t h e  surface of t h e  p l a t e  i n t o  a su i tab le  g r i d  network as i s  shown i n  
f igure  1 f o r  a p l a t e  of a rb i t r a ry  shape. The in te rsec t ions  of t h e  g r i d  network 
are referred t o  as g r i d  s t a t ions  o r  g r i d  points.  The der ivat ives  i n  equa- 
t i o n  (1) are expressed by means of f ini te-difference expressions i n  terms of 
t h e  value of t h e  so lu t ion  surface associated with each g r i d  s t a t i o n  $i. The 
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required s e t  of f in i te -d i f fe rence  equations i s  then determined by minimizing 
t h e  complementary s t r a i n  energy with respect t o  each $1. 

The notat ion r e l a t ing  t o  the  g r i d  s t a t ions  i s  shown i n  f igure  2. The sta- 
t i o n  0 i s  a cen t r a l  point at  which the  associated unknown value of t h e  solut ion 
surface i s  re fer red  t o  as The subscr ipts  associated with the  other  g r i d  
s t a t ions  a r e  t h e  d i r ec t iona l  bearings of t h e  s t a t ions  with respect t o  the  sta- 
t i o n  0. Subscripts a r e  a l so  indicated a t  ha l f - s ta t ions  which do not coincide 
with the  g r i d  s ta t ions ,  but which a re  useful  i n  evaluating t h e  mixed p a r t i a l  
der ivat ive.  

do. 

For in tegra t ion  over t h e  plate ,  elements shown as  type 1 area i n  f igure  2 
a re  used f o r  all Elements designated as type 2 
area a re  used f o r  t h e  a @/ax &y terms. 
expressions having t h e  orders of e r r o r  indicated w a s  used (see chs. I1 and V of 
r e f .  7): 

a2$?j/ax2 and a2#/h2 terms. 
2 

The following s e t  of f in i te -d i f fe rence  

= -(&E - & - + a,) a2@NE/2 1 
ax ay EA 

(4) 

The replacement of t he  in tegra t ion  i n  equation (1) by a t rapezoidal  sum- 
mation and subsequent d i f f e ren t i a t ion  with respect t o  each 
following general  equation: 

fii leads t o  the  
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where 

R number of g r i d  s t a t ions  at which value of solut ion surface i s  unknown; 
i n  general, includes f i c t i t i o u s  g r i d  points  located j u s t  off  
boundaries 

K t o t a l  number of g r i d  s t a t ions  associated with type 1 areas ( f i g .  2) 

M t o t a l  number of g r i d  s t a t ions  associated with type 2 areas ( f i g .  2) 

k g r i d  s t a t ions  f o r  which type 1 areas apply 

m ha l f - s ta t ions  f o r  which type 2 areas apply 

The in tegra t ion  factors ,  represented by 'lk and vm, are uni ty  f o r  a general  
point but may be l e s s  than uni ty  f o r  points  i n  t h e  neighborhood of a boundary, 
depending on t h e  degree that. t h e  boundary has truncated t h e  g r i d  element. 

The required set of difference equations can now be determined by u t i l i z i n g  
equations (4)  i n  equation ( 5 ) .  
summation process need not proceed over t h e  e n t i r e  plate;  t h a t  is, t he  p a r t i a l  
der ivat ive of t he  energy with respect t o  e x i s t s  only i n  the  neighborhood 
of t h e  general  point i. For example, consider a pa r t i cu la r  point 0, as shown 
i n  f igure  2; then t h e  term 

It i s  noted from equations (4 )  and ( 5 )  t h a t  t he  

fli 

has nonzero values only when t h e  second der ivat ive i s  evaluated a t  0, E, 
o r  W. Therefore, by using equations (4), equation ( 5 )  becomes: 
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+ 

where 

(i = 1, 2, . . . K) 

T i  = & q ) i  ( i = l ,  2, 3, . . . 

.11 ( j  = 1, 2, 3 ,  . . . 

and 

E r  reference modulus of e l a s t i c i t y  

h r  reference p l a t e  thickness 

The detailed d i f f e ren t i a t ion  with respect t o  jd0 i n  equation (6)  has not 
been carr ied out because the  inclusion of cer ta in  boundary conditions leads t o  
spec ia l  results when t h e  general  point i s  related t o  i t s  immediate neighbors 
by these boundary conditions. When the  value of t he  solut ion surface asso- 
c ia ted with the  general  point 0 i s  not related t o  values associated with other  
points  through t h e  boundary conditions, a general  equation holding i n  the  

0 

a 



I - 

i n t e r i o r  region removed from the  boundaries and wri t ten about t h e  0 point i s  
obtained from equation (6)  i n  terms of 13 coeff ic ients  as follows: 

9 



and 

2 
Qsw = -I(:) (Ps + a,) + 2 0  + P)(;)5sw,2 

GO = 2 E   TO - ( ; ~ ( T N  + Ts) - TE - TW 

The inclusion of ex te r io r  g r i d  points  causes t h e  so-called natural  boundary 
conditions (which involve t h e  second and t h i r d  der ivat ives  of 
f i e d  as w e l l  as i s  possible  f o r  t he  assumed g r i d  spacing. 
normal force  on a boundary, then E(@) along t h e  boundary i s  zero so t h a t  $ 
may be taken equal t o  zero along t h e  boundary and t h e  minimization with respect 
t o  $ does not involve the  boundary g r i d  points .  For t h i s  case equations (8) 
t o  (22) apply d i r e c t l y  but it should be noted tha t  t he  in tegra t ion  f ac to r  may 
be zero f o r  some of t h e  coeff ic ients  of t h e  off-boundary grid points  even though 
fi If there  i s  zero shearing force 
along t h e  boundary, t h e  boundary condition i s  equivalent t o  se t t i ng  the normal 
der ivat ive of fi along t h e  boundary equal t o  zero, which means t h a t  the  off-  
boundary g r i d  points  are determined from t h e  i n t e r i o r  points  by symmetry rela- 
t i ons .  These re la t ions  must be used i n  equation (6)  before the  d i f f e ren t i a t ion  
i s  performed. 
condition have been derived from equation (6)  for several  locat ions of t he  g r i d  
point with respect t o  t h e  boundary and are shown i n  appendix A. These values 
are f o r  a uniform p l a t e  but  could be extended t o  t h e  general  case by the  use of 
t h e  same symmetry conditions i n  conjunction with equation (6).  Also included 
i n  appendix A are t h e  coef f ic ien ts  f o r  a general i n t e r i o r  point.  

16) t o  be satis- 
If there  i s  zero 

at the  off-boundary g r i d  points  i s  not zero. 

The coef f ic ien ts  t o  be used i n  equation (8) f o r  t h i s  boundary 

Equation ( 8 ) ,  when properly wri t ten t o  include t h e  e f f ec t s  of t h e  imposed 
boundary conditions, defines a s e t  of R algebraic equations i n  R unknowns 
which may be wr i t ten  i n  matrix form as 

The in-plane forces  are then determined by solut ion of equation (23) f o r  
and direct subs t i tu t ion  of t h e  results i n t o  equations ( 2 )  and (4 ) .  

lj 
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NU!4ERICAL EVALUATION OF ME!THOD 

The appl icabi l i ty  and accuracy of t h e  f ini te-difference method i s  evaluated 
by applying it to determine t h e  midplane force  d is t r ibu t ion  f o r  a thin,  f l a t  
p l a t e  with a "tent" type of temperature d i s t r ibu t ion  as shown i n  f igure  3 .  This 
problem w a s  chosen because an approximate solut ion and experimental r e su l t s  are 
presented i n  reference 1 t o  provide a comparison of t he  r e su l t s .  

Two g r id  spacings a re  used t o  provide some indicat ion of t he  convergence. 
The g r id  spacing shown i n  f igure  3 i s  referred t o  as f i n e  gr id  spacing and 
r e su l t s  i n  a solut ion surface which can be determined at  gr id  s t a t ions  1 t o  24. 
A gr id  spacing having in t e rva l s  which a re  twice t h e  s i z e  of t he  f i n e  g r id  in t e r -  
va ls  i s  referred t o  as coarse g r id  spacing and r e s u l t s  i n  a solut ion surface 
which can be determined a t  g r i d  s t a t ions  1, 3,  5 ,  13, 15, and 17. 

The ac tua l  p l a t e  occupies t h e  region -a 5 x 5 a, -b 2 y b; but, because 
of p l a t e  and temperature syrmnetry, it i s  su f f i c i en t  t o  consider only one quad- 
rant .  0 s x s a, 0 d y 4 b 
where t h e  temperature d i s t r ibu t ion  i s  represented mathematically by 

The quadrant considered i s  located i n  the  region 

aT = AT1(l - 5 )  
The p la t e  i s  assumed t o  be free of s t r e s s  along t h e  boundaries x = a and 

y = b and, because of symmetry, Nw = 0 along x = 0 and y = 0. Thus, t he  
boundary conditions a r e  

- 0  - -  aa 
ax 

(x = a)  

( x  = 0) 

By considering these boundary conditions, t h e  set of equations f o r  t h e  
determination of $i may be wr i t ten  d i r e c t l y  from appendix A. These equations 
f o r  t h e  coarse and f i n e  g r i d  spacing are presented i n  appendix B, respectively.  

RESULTS AND DISCUSSION 

P i c t o r i a l  representations of t h e  results are shown i n  f igures  4, 5, 6, 
and 7. Figure 4 shows the solut ion surface defined by the  Airy stress function; 
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f igure  5 shows t h e  d i s t r ibu t ion  of 

and f igure  7 shows the d i s t r ibu t ion  of 
i n  each f igure  i s  t h a t  which w i l l  best exhibit the charac te r i s t ics  of the 
var iables .  

Nx; figure 6 shows t h e  d is t r ibu t ion  of Ny; 

Nxy. Note t h a t  the  point of view chosen 

The results of t h e  f ini te-difference solut ions and the  approximate solu- 
t i o n  of reference 1 are compared i n  f igures  8, 9, 10, and 11. Figure 8 shows 
t h e  var ia t ion  of t h e  midplane force Nx with y/b a t  x/a = 0. Figure 9 shows 
t h e  var ia t ion  of t he  midplane force Ny with x/a at  y/b = 0. Figure 10 
shows t h e  var ia t ion  of Nx with x/a f o r  y/b = 0 and y/b = 1. Figure 11 
shows t h e  var ia t ion  of Nx with y/b a t  x/a = 0.67 together  with experimental 
data f o r  x/a = 0.7. 
networks ind ica tes  that t h e  f in i te -d i f fe rence  calculat ions are converging 
rapidly as the  number of g r id  s t a t ions  i s  increased. 
s t r e s ses  calculated from the  f ini te-difference solut ions are  generally i n  good 
agreement with t h e  r e s u l t s  of t h e  approximate solut ion of reference 1. However, 
t h e  t rend of t h e  two f ini te-difference solut ions and the  comparison w i t h  experi- 
ment shown i n  f igure  11 suggest t h a t  t h e  f in i te -d i f fe rence  r e su l t s  are more 
accurate than the  approximate r e su l t s  of reference 1. 

Comparison of t h e  results f o r  t h e  coarse and fine.  g r id  

It i s  noted t h a t  t h e  

CONCLUDING REMARKS 

The appl icabi l i ty  of a var ia t iona l  technique t o  obtain d i r ec t ly  the  f i n i t e -  
difference equations f o r  t he  A i r y  stress function associated with thermally 
induced midplane forces  has been evaluated. The evaluation w a s  made by applying 
the method t o  determine the stress d i s t r ibu t ion  f o r  a p l a t e  configuration and 
temperature d i s t r ibu t ion  f o r  which an approximate solut ion and experimental data 
are available.  Good agreement with these results w a s  found. The r e su l t s  of 
calculat ions based on a ra ther  coarse and a f i n e  grid network indicated t h a t  
t h e  f ini te-difference solutions converge rapidly as t h e  number of g r id  s t a t ions  
i s  increased. 

It i s  concluded that the  formulation of t h e  f ini te-difference equations 
from t h e  complementary s t r a i n  energy, with i t s  inherent advantage tha t  only the 
"geometric" boundary conditions need be imposed on the  s t r e s s  function a t  the  
boundary, i s  an excellent method f o r  t h e  calculat ion of thermally induced m i d -  
plane forces.  
g r i d  points  of p l a t e s  with var iable  propert ies  i s  recorded f o r  convenience. 
treatment of points  near p l a t e  boundaries has been presented i n  convenient form 
f o r  t h e  important case of a rectangular p l a t e  of constant thickness. 

The resulting generic difference equation f o r  i n t e r i o r  rectangular 
The 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 25, 1964. 
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APPENDIX A 

VALUES OF COEFFICIENTS T O  BE USED I N  EQUATION (8) 

FOR A BOUNDARY HAVING ZERO SHEARING FORCE 

The coeff ic ients  f o r  a general i n t e r i o r  point are given f irst .  For subse- 
quent cases on ly  coef f ic ien ts  t h a t  have changed from those f o r  t he  general case 
a re  given. The boundary condition has been used t o  eliminate the  values of 
f o r  t h e  ex te r io r  points; hence t h e  at a l l  points  ex ter ior  t o  the  p l a t e  now 
have zero coeff ic ients  i n  equation (8). 

f$ 
$1 

For t h e  general i n t e r i o r  point: 

c +&" 
4 

&" = Qss = (f) 

I +'m +&S +%E 

t-4 +Qss 

4 
Q~ = 6 + 8($ + 6(;) 

For a point 1 g r i d  space from t h e  boundary: 

x-x- X 
QNWQN QNE 

Q s s  
+ 



For a point on the  boundary: 

-X- X"X-x- 
Qww Qw a0 QE QEE 

+ 
Qss 

For a point 1 grid space from t h e  corner: 

+ 
%W +% %E 

+QSS 

For a point on t h e  corner: 

c x - x -  
QE QEE 

+ 
% QSE I tQss 

1 
QEE = 

Qss = 2 YE," 
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For a point 1- g r i d  spaces from the  boundary: 

+ + 
QE Qm 

~~ ~ 

+ +% +QN %E 

+ + +% +%? QE QEE 

%W +% +%E 
+ 

+QSS 

1 
2 

For a point 1- g r i d  spaces from t h e  corner: 

OQO 

+Qs 

+ 
Qss 

%E 
+ 

% = -3 - 4($ 

I 



1 
2 

For a point - g r i d  space from t h e  boundary: 

+Qss 

2 4 
Qs = -4j f )  - 3 ( 3  

1 For a point 1 g r i d  space from one boundary and 
boundary: 

g r i d  space from another 

+QSS 
I 4 a, = 7 + 2(;) + 4($ 

For a point on one boundary and 1 g r i d  space from another boundary: 

Case 1: 

4 1 %  ,Qo QE QEE X x-x- 
0 = 3$ + 3 ( 3  + 4($ 
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Case 2:  

For a point 1 grid space from the boundary: 



APPENDIX B 

FINITE-DIFFERENCE EQUATIONS FOR STRESS FUNCTION 

Finite-difference equations f o r  determining $1 can be wr i t ten  f o r  t h e  
rectangular p l a t e  shown i n  f igure  3 .  

The equation f o r  t h e  coarse g r id  system i s  
- 

5 -4 - 5  -4 2 0 

-4 10.5 -4 2 -8 2 

.5 -4 10.5 0 

-4 2 0 11.0 -8 1 

-8 23 - 

2 -8 2 -8 23 -8 

0 2 -8 1 

81 

-:i $1: 

81; 

h 
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The equation f o r  t h e  f i n e  g r i d  system i s  

- - 
5 - 4 . 5 0 0  0 -4 2 0 0 0 0 . 5 0 0 0 0 0  0 0 0 0 0 0  

10.5-4.50 o 2 - a 2 0 0 0 0 1 0 0 0 0  o Q O Q Q O  

0 2 - 8 2 0 0 0 0 1 0 0 0  0 0 0 0 0 0  

1 0 - 4 . 5  Q O ~ - ~ ~ O Q Q Q ~ O Q  Q Q Q Q O Q  

o O O ~ - ~ ~ Q Q O O ~ Q  Q O Q O Q Q  

o O O O ~ - ~ O O O O O ~  Q O O Q Q Q  

10.2-8 1 Q o 0 - 4  2 Q Q o Q .5 o Q Q Q Q 

Symmetric 

2 2 - a 1 0 0 2 - ~ 2 0 0 0  o ~ Q Q Q Q  

u - 8 1 0 0 2 - a 2 0 0  o Q ~ Q Q Q  

u - a 1 0 0 2 - 8 2 0  Q Q Q ~ Q Q  

U - 8 0 0 0 2 - 8 2  0 0 0 0 1 0  

2 2 0 0 0 0 2 - a  Q Q Q O Q ~  

1 0 - 8 1 0 0 0 - 4  2 0 0 0 0  

U - 8 1 0 0  2 - 8 2 0 0 0  

20 -8  1 0  0 2 - 8  2 0 0 

2 0 - 8 1  Q 0 2 - 8 2 0  

20 -8  0 0 0 2 - 8 2  

21 Q Q Q Q 2 - a  

22 -8 1 0 0 

21 -a 1 Q 
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Figure 1.- General planform of p l a t e  showing possible grid network. 
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Figure 2.- General point 0, i t s  neighbors, and i l l u s t r a t i o n s  of type 1 and type 2 integrat ion areas .  
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( a )  Plate  planform and gr id  network. 
a/b = 312; E = h = a/6. 

(b)  Temperature distribution. 
AI? = aTl(1 - y/b); 
O s y s b ;  0 6 ~ 6 a .  

Figure 3.- Grid spacing and temperature dis t r ibut ion used i n  evaluating the finite-difference technique. 
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Figure 4.- Solution surface defined by Airy stress function f o r  rectangular plate  with A!I = LQ(1 - y/b). Symmetric about 
x/a = 0 and y/b = 0. a/b = 312; p = 113; E = h =a/6. 
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Figure 5.- Distribution of midplane force intensi ty  N, due t o  temperature distribution I9 = &(1 - y/b). S p e t r i c  
about x/a = 0 a& y/b = 0. 



0.50 

0.2E 

/ 

Figure 6.- Distribution of midplane force intensi ty  Ny due t o  temperature distribution AT = ATl(1 - y/b). Symmetric 
about x/a = 0 and y/b = 0. 
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Figure 7.- Distribution of midplane shear force intensity Nq due t o  temperature distribution AT = Al'i(1 - y/b). Anti- 

symmetric about x/a = 0 and y/b = 0. 



0.4 

0.2  

N X  

aEhAT I 

0 

-0.2 

-0.4 

~ F i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n  
F i .ne  g r i d  

C o a r s e  g r i d  
- - M e t h o d  o f  TN 2 7 6 9  

_ _ _ _  - 
_ _ -  

0 0 . 2  0.4  0 

Y/b 

~ 

Figure 8.- Comparison of variation of midplane force intensity Nx with y/b at x/a = 0 for 
temperature distribution hT = m,(l - y/b). Symmetric about y/b = 0. 
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Figure 9.- Comparison of var ia t ion  of midplane force in t ens i ty  % with x/a a t  y/b = 0 f o r  
temperature d i s t r ibu t ion  AT = ATl(1 - y/b). Symnetric about x/a = 0. 
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Figure 10.- Comparison of var ia t ion  of midplane force in tens i ty  Nx with x/a a t  y/b = 0 and 
y/b = 1 f o r  temperature d is t r ibu t ion  AT = ATl(l - y/b). Symetr ic  about x/a = 0. 
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Figure 11.- Comparison of var ia t ion of midplane force in tens i ty  N, with y/b a t  x/a = 0.67 for 

temperature d is t r ibu t ion  AT = ATl(1 - y/b). Synunetric about y/b = 0. 

NASA-Langley, 1964 L-3519 



“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansioiz o f  hzrman knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of inf ormation concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or  grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMl N ISTRATI ON 

Washington, D.C. PO546 


